lpc.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. #include <stdlib.h>
  2. #include <string.h>
  3. #include <stdio.h>
  4. #include <stdarg.h>
  5. #include <serial.h>
  6. #include <uucode.h>
  7. #include <lpc.h>
  8. const struct lpc_part lpc_parts[] = {
  9. {"LPC1111/101", 0x041e502b, 2, 8},
  10. {"LPC1111/101 or 102", 0x2516d02b, 2, 8},
  11. {"LPC1111/201", 0x0416502b, 4, 8},
  12. {"LPC1111/201 or 202", 0x2516902b, 4, 8},
  13. {"LPC1112/101", 0x042d502b, 2, 16},
  14. {"LPC1112/101 or 102", 0x2524d02b, 2, 16},
  15. {"LPC1112/201", 0x0425502b, 4, 16},
  16. {"LPC1112/201 or 202", 0x2524902b, 4, 16},
  17. {"LPC1113/201", 0x0434502b, 4, 24},
  18. {"LPC1113/201 or 202", 0x2532902b, 4, 24},
  19. {"LPC1113/301", 0x0434102b, 8, 24},
  20. {"LPC1113/301 or 302", 0x2532102b, 8, 24},
  21. {"LPC1114/201", 0x0444502b, 4, 32},
  22. {"LPC1114/201 or 202", 0x2540902b, 4, 32},
  23. {"LPC1114/301", 0x0444102b, 8, 32},
  24. {"LPC1114/301 or 302", 0x2540102b, 8, 32},
  25. {"LPC11C12/301", 0x1421102b, 8, 16},
  26. {"LPC11C14/301", 0x1440102b, 8, 32},
  27. {"LPC11C22/301", 0x1431102b, 8, 16},
  28. {"LPC11C24/301", 0x1430102b, 8, 32},
  29. {NULL, 0, 0, 0}
  30. };
  31. const struct sprog_family lpc_family = {
  32. .setup = (void*(*)(struct serial_device*)) lpc_setup,
  33. .init = (void(*)(void*)) lpc_init,
  34. .exec = (void(*)(void*, const struct sprog_data*)) lpc_exec,
  35. .write = (void(*)(void*, const struct sprog_data*)) lpc_write,
  36. .close = (void(*)(void*)) lpc_close
  37. };
  38. void lpc_ispmode(struct lpc_device *dev, int state);
  39. void lpc_reset(struct lpc_device *dev, int isp);
  40. int lpc_scanf(struct lpc_device *dev, const char *text, ...);
  41. void lpc_vprintf(struct lpc_device *dev, const char *text, va_list l);
  42. void lpc_printf(struct lpc_device *dev, const char *text, ...);
  43. int lpc_getline(struct lpc_device *dev, char *buf);
  44. int lpc_command(struct lpc_device *dev, const char *text, ...);
  45. int lpc_await_reply(struct lpc_device *dev, ...);
  46. int lpc_read_partid(struct lpc_device *dev);
  47. void lpc_write_ram(struct lpc_device *dev, const struct sprog_data *d, unsigned int addr);
  48. struct lpc_device *lpc_setup(struct serial_device *port) {
  49. struct lpc_device *dev;
  50. dev = malloc(sizeof(struct lpc_device));
  51. dev->port = port;
  52. dev->part = NULL;
  53. dev->reply_time = 5000;
  54. lpc_reset(dev, 1);
  55. return dev;
  56. }
  57. void lpc_init(struct lpc_device *dev) {
  58. char buf[4096];
  59. serial_write(dev->port, "?");
  60. if(lpc_await_reply(dev, "Synchronized", NULL)==1) {
  61. sprog_info("Synchronization successful\n");
  62. lpc_printf(dev, "Synchronized\r\n");
  63. if(lpc_await_reply(dev, "OK", NULL)!=1)
  64. sprog_error("Expected OK, received '%s'\n", buf);
  65. lpc_printf(dev, "12000\r\n");
  66. if(lpc_await_reply(dev, "OK", NULL)!=1)
  67. sprog_error("Expected OK, received '%s'\n", buf);
  68. } else {
  69. serial_write(dev->port, "\r\n");
  70. if(lpc_await_reply(dev, "?", NULL)==1)
  71. sprog_info("The device appears to be already synchronized\n");
  72. else
  73. sprog_error("Invalid device response\n");
  74. lpc_getline(dev, buf); /* receive invalid command reply */
  75. }
  76. if(lpc_read_partid(dev)==0)
  77. sprog_info("Found device: %s, %dkB Flash, %dkB RAM\n", dev->part->name, dev->part->flash, dev->part->ram);
  78. }
  79. void lpc_write(struct lpc_device *dev, const struct sprog_data *d) {
  80. static const int chunk_sizes[] = {256, 512, 1024, 4096, 0}; /* keep it sorted! */
  81. struct sprog_data chunk;
  82. int i;
  83. int j;
  84. int status;
  85. int offset;
  86. int chunk_size;
  87. int max_chunk_index;
  88. int data_size;
  89. offset = 0;
  90. chunk.data = NULL;
  91. lpc_command(dev, "U 23130\r\n"); /* unlock the device */
  92. i = dev->part->flash/4 - 1; /* last sector = Flash size / 4kB - 1 */
  93. lpc_command(dev, "P 0 %d\r\n", i);
  94. sprog_info("Erasing Flash memory... ");
  95. j = dev->reply_time;
  96. dev->reply_time = 5000;
  97. if(lpc_command(dev, "E 0 %d\r\n", i))
  98. sprog_info("Error\n");
  99. else
  100. sprog_info("OK\n");
  101. dev->reply_time = j;
  102. i = d->size/4096 - 1;
  103. if(d->size % 4096)
  104. i++;
  105. lpc_command(dev, "P 0 %d\r\n", i); /* prepare sectors for write */
  106. while(d->size-offset>0) {
  107. chunk_size = d->size - offset;
  108. for(i=0; chunk_sizes[i]; i++) {
  109. if(chunk_sizes[i]>=chunk_size)
  110. break;
  111. if(chunk_sizes[i]+1024 > dev->part->ram * 1024) {
  112. i--;
  113. break;
  114. }
  115. }
  116. if(chunk_sizes[i]==0)
  117. i--;
  118. chunk_size = chunk_sizes[i];
  119. max_chunk_index = i;
  120. data_size = chunk_size;
  121. if(data_size > d->size-offset) {
  122. data_size = d->size - offset;
  123. /* we assume that all of the available chunk sizes are divisible by the first one */
  124. /* TODO: Optimize the following code, assuming that the chunk sizes are powers of 2 */
  125. chunk_size = data_size - data_size % chunk_sizes[0];
  126. if(data_size % chunk_sizes[0])
  127. chunk_size += chunk_sizes[0];
  128. }
  129. sprog_alloc_data(&chunk, chunk_size);
  130. for(i=0; i<data_size; i++)
  131. chunk.data[i] = d->data[offset+i];
  132. for(i=data_size; i<chunk_size; i++)
  133. chunk.data[i] = 0xff;
  134. chunk.size = chunk_size;
  135. if(offset==0) {
  136. /* calculate the checksum and put it at 0x1c in the vector table */
  137. j = 0;
  138. for(i=0; i<0x1c; i+=4)
  139. j += chunk.data[i] | chunk.data[i+1]<<8 | chunk.data[i+2]<<16 | chunk.data[i+3]<<24;
  140. j = -j;
  141. for(i=0; i<4; i++) {
  142. chunk.data[0x1c+i] = j & 0xff;
  143. j >>= 8;
  144. }
  145. }
  146. lpc_write_ram(dev, &chunk, 0x10000400);
  147. sprog_info("Copying to Flash...\n");
  148. j = max_chunk_index;
  149. status = 1;
  150. for(i=chunk_size; i>0; i-=chunk_sizes[j]) {
  151. for(j=j; j>=0; j--)
  152. if(chunk_sizes[j]<=i)
  153. break;
  154. if(lpc_command(dev, "C %d %u %d\r\n", offset+(chunk_size-i), 0x10000400+(chunk_size-i), chunk_sizes[j]))
  155. status = 0;
  156. }
  157. if(status)
  158. sprog_info("Done!\n");
  159. else
  160. sprog_info("Error\n");
  161. offset += data_size;
  162. }
  163. }
  164. void lpc_exec(struct lpc_device *dev, const struct sprog_data *d) {
  165. lpc_write_ram(dev, d, 0x10000400);
  166. lpc_command(dev, "U 23130\r\n");
  167. sprog_info("Executing code... ");
  168. if(lpc_command(dev, "G %u T\r\n", 0x10000400))
  169. sprog_info("Error\n");
  170. else
  171. sprog_info("OK\n");
  172. }
  173. void lpc_write_ram(struct lpc_device *dev, const struct sprog_data *d, unsigned int addr) {
  174. struct sprog_data tmp;
  175. int last_offset;
  176. int last_i;
  177. int offset;
  178. int checksum;
  179. char buf[64];
  180. int i;
  181. int j;
  182. sprog_info("Writing %d bytes\n", d->size);
  183. /* align data size to 4 */
  184. if(d->size & 3) {
  185. tmp.data = NULL;
  186. sprog_alloc_data(&tmp, d->size + 4);
  187. for(i=0; i<d->size; i++)
  188. tmp.data[i] = d->data[i];
  189. for(i=d->size; i & 3; i++)
  190. tmp.data[i] = 0;
  191. tmp.size = i;
  192. d = &tmp;
  193. }
  194. lpc_command(dev, "W %u %u\r\n", addr, d->size);
  195. last_i = 0;
  196. last_offset = 0;
  197. offset = 0;
  198. sprog_progress(offset, d->size);
  199. checksum = 0;
  200. for(i=0; (j = uuencode_line(d, buf, &offset, &checksum)); i++) {
  201. lpc_printf(dev, "%s\r\n", buf);
  202. if(j==2 || (i % 20)==19) {
  203. lpc_printf(dev, "%u\r\n", checksum);
  204. checksum = 0;
  205. switch(lpc_await_reply(dev, "OK", "RESEND", NULL)) {
  206. case 1:
  207. last_offset = offset;
  208. last_i = i;
  209. break;
  210. case 2:
  211. default:
  212. offset = last_offset;
  213. i = last_i;
  214. }
  215. }
  216. sprog_progress(offset, d->size);
  217. }
  218. sprog_info("\n");
  219. }
  220. int lpc_await_reply(struct lpc_device *dev, ...) {
  221. char buf[4096];
  222. int i;
  223. const char *t;
  224. va_list l;
  225. va_start(l, dev);
  226. if(!lpc_getline(dev, buf))
  227. return 0;
  228. for(i=0; buf[i]; i++) {
  229. if(buf[i]=='\n') {
  230. buf[i] = 0;
  231. if(i>0) {
  232. if(buf[i-1]=='\r')
  233. buf[i-1] = 0;
  234. }
  235. break;
  236. }
  237. }
  238. for(i=0; (t = va_arg(l, const char*)); i++) {
  239. if(strcmp(buf, t)==0)
  240. return i+1;
  241. }
  242. return -1;
  243. }
  244. int lpc_getline(struct lpc_device *dev, char *buf) {
  245. if(sprog_waitdata(dev->port, dev->reply_time)==0)
  246. return 0;
  247. fgets(buf, 4096, dev->port->f);
  248. return 1;
  249. }
  250. int lpc_scanf(struct lpc_device *dev, const char *text, ...) {
  251. int r;
  252. char buf[4096];
  253. va_list l;
  254. va_start(l, text);
  255. if(!lpc_getline(dev, buf))
  256. return 0;
  257. r = vsscanf(buf, text, l);
  258. va_end(l);
  259. return r;
  260. }
  261. void lpc_vprintf(struct lpc_device *dev, const char *text, va_list l) {
  262. char buf[4096];
  263. vsprintf(buf, text, l);
  264. serial_write(dev->port, buf);
  265. lpc_getline(dev, buf);
  266. }
  267. void lpc_printf(struct lpc_device *dev, const char *text, ...) {
  268. va_list l;
  269. va_start(l, text);
  270. lpc_vprintf(dev, text, l);
  271. va_end(l);
  272. }
  273. int lpc_command(struct lpc_device *dev, const char *text, ...) {
  274. int res;
  275. va_list l;
  276. va_start(l, text);
  277. lpc_vprintf(dev, text, l);
  278. va_end(l);
  279. if(lpc_scanf(dev, "%d", &res)<1)
  280. return -1;
  281. return res;
  282. }
  283. int lpc_read_partid(struct lpc_device *dev) {
  284. int i;
  285. int res;
  286. unsigned int partid;
  287. res = lpc_command(dev, "J\r\n");
  288. if(res!=0)
  289. return res;
  290. lpc_scanf(dev, "%u", &partid);
  291. for(i=0; lpc_parts[i].name; i++)
  292. if(lpc_parts[i].part_id==partid)
  293. break;
  294. if(lpc_parts[i].name)
  295. dev->part = &lpc_parts[i];
  296. else
  297. return -1;
  298. return 0;
  299. }
  300. void lpc_ispmode(struct lpc_device *dev, int state) {
  301. serial_setline(dev->port, SERIAL_RTS, state);
  302. }
  303. void lpc_reset(struct lpc_device *dev, int isp) {
  304. /* TODO: configure the control lines */
  305. serial_setline(dev->port, SERIAL_DTR, 1);
  306. if(isp)
  307. lpc_ispmode(dev, 1);
  308. sprog_sleep(50);
  309. serial_setline(dev->port, SERIAL_DTR, 0);
  310. if(isp) {
  311. sprog_sleep(50);
  312. lpc_ispmode(dev, 0);
  313. }
  314. }
  315. void lpc_close(struct lpc_device *dev) {
  316. lpc_reset(dev, 0);
  317. serial_close(dev->port);
  318. free(dev);
  319. }